
A review on TinyML: State-of-the-art and prospects

Abstract

Machine learning has become an indispensable part of the existing

technological domain. Edge computing and Internet of Things (IoT) together presents

a new opportunity to imply machine learning techniques at the resource constrained

embedded devices at the edge of the network. Conventional machine learning requires

enormous amount of power to predict a scenario. Embedded machine learning –

TinyML paradigm aims to shift such plethora from traditional high-end systems to

low-end clients. Several challenges are paved while doing such transition such as,

maintaining the accuracy of learning models, provide train-to-deploy facility in

resource frugal tiny edge devices, optimizing processing capacity, and improving

reliability. In this paper, we present an intuitive review about such possibilities for

TinyML. We firstly, present background of TinyML. Secondly, we list the tool sets

for supporting TinyML. Thirdly, we present key enablers for improvement of

TinyML systems. Fourthly, we present state-of-the-art about frameworks for TinyML.

Finally, we identify key challenges and prescribe a future roadmap for mitigating

several research issues of TinyML.

Previous article in issue

Next article in issue

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/machine-learning
https://www.sciencedirect.com/topics/computer-science/edge-computing
https://www.sciencedirect.com/topics/computer-science/internet-of-things
https://www.sciencedirect.com/topics/computer-science/machine-learning-technique
https://www.sciencedirect.com/topics/computer-science/processing-capacity
https://www.sciencedirect.com/science/article/pii/S1319157822000398


Keywords

TinyML

IoT

Edge intelligence

Energy efficient AI

Resource constrained intelligence

Embedded AI

1. Introduction

Edge computing brings computation and data storage closer to the origin of

data (Muniswamaiah et al., 2021). Edge computing provides an infrastructure to

allow distributed computing play location sensitive acts (Anusuya et al., 2021) (Ying

et al., 2021). The major advantage of edge computing is to provide low-latency and

high-availability of several network aware services. Edge computing provides better

privacy, security, and reliability to the network end-users (Bao et al., 2021). It

leverages analytical computation resources very close to the end-users, resulting

in higher throughput and better responsiveness in the applications (Lu and Lin, 2021).

Several use cases can be considered as follows, smart healthcare, autonomous driving,

public safety, human–machine interaction, agriculture, and emergency applications.

Major benefit of edge computing is the reduction of the network traffic. Doing so, can

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/edge-computing
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/distributed-computing
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/high-throughput
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/smart-healthcare
https://www.sciencedirect.com/topics/computer-science/autonomous-driving


help to run complex games and virtual reality aware events at the lightweight clients

(Nezami et al., 2021) (Alwarafy et al., 2021).

Edge computing has tremendous potential to improve the automated network

services with less burden on the network backhaul (Ding et al., 2021). IoT is such

an instantiation of edge computing that allows billions of devices to transmit and

receive the sensor originated data. IoT devices are deployed at the edge of the

network with very-low processing capacity and memory footprint (Muhammad and

Hossain, 2021) (Goudarzi et al., 2021). Majority of the edge devices that are

integrated with IoT-based ecosystems are initially designed to collect sensor data and

transmission of the data to neighborhood or remote cloud (Liu et al., 2021). IoT can

help to move the computation away from the cloud to the edge of the network with a

collaborative approach from sensors, edge devices, and cloud facilities (Singh et al.,

2021). Such an orientation can provide data persistence, content caching, better

service delivery, and quality IoT data management. Privacy and security can be

significantly improved in this context (Wu et al., 2021). It can happen by shifting the

security schemes getting shifted from cloud to IoT-edge devices. As an IoT-edge

facility highly depends on the edge platforms for data collection and end-to-end data

propagation, it minimally depends on the data transceiving through the long backhaul

(Li et al., 2021b). However, it is a fact that such edge hardware is very resource

constrained in nature that limits them to select high-end and complex services.

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/network-service
https://www.sciencedirect.com/topics/computer-science/network-service
https://www.sciencedirect.com/topics/computer-science/backhaul-network
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/instantiation
https://www.sciencedirect.com/topics/computer-science/internet-of-things-device
https://www.sciencedirect.com/topics/computer-science/processing-capacity
https://www.sciencedirect.com/topics/engineering/memory-footprint
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/collect-sensor-data
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335


It is evident that currently edge computing can’t solve everything, though it is

expected to cater in near future (Guleria et al., 2021). One reason can be the huge

difference between the hardware and web-based technologies that paves

heterogeneous behavior. For example, machine learning applications require

resource-full infrastructure to train, weight update, and deployment of the models

(Ren et al., 2021b). Present scenario of IoT-edge is getting significant importance due

to the need of deploy-ability of machine learning for smart use case development.

Embedded system architectures are platform dependent that also hinders development

of a standard machine learning framework for all IoT-edge systems. Further, the

present technology domain presents a gap between machine learning dedicated

embedded hardware and the required software to polish it (Ogino, 2021). Most of the

existing embedded processors allow generic sensor data processing and web-based

applications. Machine learning tool sets depend on the sophisticated hardware chips

such as, graphics processing units (GPUs) and new dedicated hardware forms such

as application specific integrated circuits (ASICs). These chips need enormous

amounts of power and memory capacity to run deep neural network models. Present

scenario depicts an undermining practice against the envisaged “cloud-to-embedded”

aspect. Signal processing is also key for embedded intelligence, a paradigm to shift

cloud intelligence to edge device – tiny embedded device for performing machine

learning (ML) i.e., TinyML (Warden and Situnayake, 2019) (TinyML,

2021b, TinyML, 2021a).

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/machine-learning
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/system-architectures
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/graphics-processing-unit
https://www.sciencedirect.com/topics/engineering/application-specific-integrated-circuit
https://www.sciencedirect.com/topics/computer-science/deep-neural-network
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335


The TinyML paradigm is still in its nascent stage that requires proper

alignments for getting accommodated with existing edge-IoT frameworks. Pioneering

research shows that the TinyML approach is crucial for smart IoT application

development. But at the same time, several research questions (e.g., What is the need

of TinyML? Is TinyML capable of running deep neural networks at the edge? How to

keep the energy consumption less? Is high accuracy achievable by TinyML?) are

identified that can hinder the growth of TinyML. In this paper, we discuss the

background of the existing scenario behind TinyML. We also present a

state-of-the-art review of literature that aims to cater to the significant usefulness of

Tiny MLs numerous applications. Major contributions of this paper can be

summarized as follows:

●

To present intuitive understanding about the TinyML and provide detailed

insight about the fundamentals thereto



●

To present existing TinyML aware tool sets for model training and

deployment at the edge where existing libraries, software packages, and hardware

platforms are elaborated



●

Sh
aw
nP
ag
e.c
om



To discuss key enablers of TinyML paradigm to incorporate the concept of

TinyML-as-a-Service, hyperdimensional computing, swapping, attention condensers,

constrained neural architecture searching, model compression, quantization,

one-for-all network, TinyML benchmark, on-device computing cum accelerator, and

in-processor learning.



●

To present state-of-the-art frameworks for TinyML wherein we discuss about

TinyML framework by current companies and research groups.



●

To illustrate use cases for TinyML where we its usage in speech recognition,

image recognition, sign language prediction, hand gesture recognition, body pose

estimation, few-shot keyword spotting, always-on-voice wake up, face detection,

cough related respiratory symptom detection, phenomics and ecological conservation,

autonomous vehicle, and anomaly detection.



●

To identify key challenges and prescribe future road map for TinyML research

where we discuss about various issues related to low-power computation, limited

memory usage, hardware-software heterogeneity, lack of suitable benchmarking tool

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/model-compression
https://www.sciencedirect.com/topics/computer-science/hand-gesture-recognition
https://www.sciencedirect.com/topics/computer-science/anomaly-detection


sets, lack of datasets, lack of popularly accepted models, edge computing

infrastructures, edge platform orchestration, data and network management, software

development for edge, and need of new machine learning models. We also present a

future road map with help of few important steps that should be incorporated in future

that includes edge intelligence framework, task offloading, mobility support, and level

rating.



Rest of the paper is organized as follows. Section II presents the background

of TinyML. Section III discusses key enablers of TinyML, Section IV presents

state-of-the-art illustrations of frameworks for TinyML. Section V deals with some

use cases involving TinyML. Section VII depicts key challenges and prescribes future

road maps. Section VIII concludes the paper.

2. Background of TinyML

2.1. Basics of TinyML

TinyML is a paradigm that facilitates running machine learning at the

embedded edge devices having very less processor and memory (ARM-TinyL, 2021)

(Forbes-TinyML, 2021). The power consumption for such systems running machine

learning should be within a few milliwatt or less. Typically, TinyML allows

IoT-based embedded edge devices to go to lower power systems with amalgamation

of sophisticated power management modules. Such a system should exploit

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/task-offloading
https://www.sciencedirect.com/topics/computer-science/machine-learning
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/electric-power-utilization
https://www.sciencedirect.com/topics/engineering/power-engineering
https://www.sciencedirect.com/topics/computer-science/management-module


the hardware acceleration (Learning, 2021). Moreover, the software that helps to run

machine learning in the TinyML scenario should be as compact as possible so that

power savings can be done. TinyML systems should specialize in optimizing various

machine learning models to provide better accuracy under resource frugal constraints.

TinyML system must accommodate following requirements, (i) energy-harvesting

edge devices for running learning models, (ii) enables battery operated embedded

edge devices, (iii) scalability to trillions of sensors enabled cheap embedded devices,

and (iv) codes that can be stored within few KB in the on-device RAM (Recent

Progress on TinyML Technologies and Opportunities, 2021) (Data Collection Design

for Real World TinyML, 2021). Today’s machine learning devices are hosted in

public clouds as well as private premises. Organizations use ready-to-go deployed

models from various learning aware cloud services in many industrial applications.

Dependency on such cloud-based machine learning services paves few challenges

such as, (i) huge energy consumption, (ii) privacy issues, (iii) network and processing

latency, and (iv) reliability issues. Existing physical world takes raw data or signals

from sensors and processes at the microprocessor unit (MPU). MPU helps to cater

AI-aware analytics support with the help of specialized edge-aware AI systems.

The edge AI can communicate with remote cloud AI for knowledge transfer. TinyML

is aware that the physical world is smarter than the existing scenario (EdgeML:

Algorithms for TinyML, 2021). Such systems can take decisions at the embedded

edge devices before seeking help from edge AI or cloud AI. This setting results in the

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/hardware-acceleration
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/battery-electrochemical-energy-engineering
https://www.sciencedirect.com/topics/engineering/reliability-availability-and-maintainability-reliability-engineering
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/microprocessor-chips
https://www.sciencedirect.com/topics/computer-science/edge-ai
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335


following improvements, (i) energy efficiency, (ii) better privacy of local data, (iii)

low processing latency, and (iv) minimal connectivity dependency.Fig. 1

. Download: Download high-res image (186KB)

. Download: Download full-size image

Fig. 1. (a) Existing physical world and digital AI, (b) TinyML assisted

physical world and digital AI.

2.2. Constraints of TinyML

Major constraints that are currently hindering the growth of the envisaged

TinyML paradigm has four key aspects, (i) energy: existing IoT-based embedded

edge devices require minimum 10–100 mAh battery for stand-alone processing; thus

efficient energy harvesting techniques should be deployed to power such edge devices

to consume necessary energy for machine learning tasks, (ii) processor capacity:

majority of tiny edge devices have 10–1000 MHz clock speed; it can restrict the

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr1_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr1.jpg
https://www.sciencedirect.com/topics/computer-science/artificial-intelligence
https://www.sciencedirect.com/topics/engineering/energy-harvesting


complex learning models from running efficiently at the edge, (iii) memory: existing

tiny edge platforms possess on average less than 1 MB on-board flash memory with

1000 KB SRAM; lack of space hinders the models to accommodate with the MCU,

and (iv) cost: though individual device cost is low, a cumulatively higher scale can

incur huge overall cost for massive deployment. Eradication of such issues are must

for TinyML to succeed in low-cost edge platforms (Artificial Neural Networks, 2021)

(MLOps for TinyML, 2021). Fig. 2 presents the comparison between TinyML with

edge ML and cloud ML in terms of algorithm, hardware, and scalability (TinyML,

2021a). TinyML systems can take direct data input from various sensors. It can use a

micro-nano level convolution neural network. The system can accommodate a

microcontroller unit (MCU) with or without hardware accelerators. Edge-based ML

devices can have optimized light-weight convolution neural networks to run on the

system-on-chip (SoC) with a neural processing unit (NPU) with in-built accelerators.

The process gets bulkier and highly computationally intensive at the cloud level

where complex deep neural networks can be executed with help of GPU, multi-core

CPUs, and tensor processing unit (TPU). Fig. 3. presents the layered approach of

TinyML.

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/static-random-access-memory
https://www.sciencedirect.com/topics/engineering/massive-deployment
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/hardware-accelerator
https://www.sciencedirect.com/topics/computer-science/deep-neural-network
https://www.sciencedirect.com/topics/engineering/graphics-processing-unit
https://www.sciencedirect.com/science/article/pii/S1319157821003335


. Download: Download high-res image (237KB)

. Download: Download full-size image

Fig. 2. TinyML has miniscule scalability.

. Download: Download high-res image (218KB)

. Download: Download full-size image

Fig. 3. Layered approach with respect to TinyML.

2.3. Definition of TinyML

Sh
aw
nP
ag
e.c
om

https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr2_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr2.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr3_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr3.jpg


In this context, we can define TinyML as follows: “machine learning aware

architectures, frameworks, techniques, tools, and approaches which are capable of

performing on-device analytics for a variety of sensing modalities (vision, audio,

speech, motion, chemical, physical, textual, cognitive) at mW (or below) power range

setting, while targeting predominately battery-operated embedded edge devices

suitable for implementation at large scale use cases preferable in the IoT or wireless

sensor network domain” (TinyML, 2021a). Thus, TinyML can be envisaged as the

composition of three key elements (i) software, (ii) hardware, and (iii) algorithms.

TinyML can be accommodated in Linux, embedded Linux, and cloud-based software

where initial TinyML applications can be run. The hardware can comprise IoT

devices with or without hardware accelerators. Such devices can be based on

in-memory computing, analog computing, and neuromorphic computing for

better learning experience. Algorithms for the TinyML system should be novel so that

KB sized models can be deployed in the resource frugal edge devices. Better

compression and quantization schemes are evitable in this context (Endpoint AI and

the Advent of the microNPU, 2021). Fig. 4. presents the essential components of

TinyML where an optimal amalgamation of hardware-software co-design is a very

important aspect. Such systems should overlap the orientations of optimized machine

learning with high quality data and compact software design (Privacy in Context,

2021, Neural, 2021). Ordinarily, the TinyML system is flashed with binary files

which are generated from the trained model on a larger host machine (Amber: A

Complete, ML-Based, Anomaly Detection Pipeline for Microcontrollers, 2021).

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/engineering/wireless-sensor-network
https://www.sciencedirect.com/topics/engineering/wireless-sensor-network
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/embedded-linux
https://www.sciencedirect.com/topics/computer-science/internet-of-things-device
https://www.sciencedirect.com/topics/computer-science/internet-of-things-device
https://www.sciencedirect.com/topics/computer-science/hardware-accelerator
https://www.sciencedirect.com/topics/computer-science/learning-experiences
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/software-design
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335


. Download: Download high-res image (182KB)

. Download: Download full-size image

Fig. 4. Composition of TinyML.

2.4. TinyML in edge

Standard edge pipeline for TinyML setting is presented in Fig.

5 (Unsupervised collaborative learning technology at the Edge, 2021). The edge

pipeline activity starts with sensors which collect raw data and provide the signal

filters. The signal filters then filters the data based on the features dimension. For

instance, if the data is in time series orientation, then time series features are

computed. Optionally, spectral features may be computed. Samples are then kept

inside a first-in-first-out (FIFO) data structure for a very short term. If the data is in

time series format, then the stationarity classifier is used to check where the data

follows stationary attributes. Next phase aims to pave IoT-based connection to long

term model memory which in turn communicates with the pattern classifier for

rule-based processing or cluster procedure, depending on the context of application.

Sh
aw
nP
ag
e.c
om

https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr4_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr4.jpg
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/spectral-feature
https://www.sciencedirect.com/topics/computer-science/data-structure
https://www.sciencedirect.com/topics/engineering/stationarity


The edge pipeline can be modified as per the requirement of the cross-section data

when needed.

. Download: Download high-res image (139KB)

. Download: Download full-size image

Fig. 5. Edge pipeline for TinyML for time series data.

3. TinyML tool sets

TinyML requires several hardware specifications, libraries, and software

platforms to leverage predictions. We present a brief about existing hardware

and software tool sets being investigated for possible TinyML deployment.

3.1. Hardware

We select several TinyML aware hardware platforms such as, Apollo3

(Apollo3, 2021), STM32F Discovery (STM32F, 2021), ST IoT Discovery (ST IoT

Discovery, 2021), ECM3532 AI Sensor Neuro sensor processor (NSP) (ECM3532,

Sh
aw
nP
ag
e.c
om

https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr5_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr5.jpg
https://www.sciencedirect.com/topics/computer-science/time-series-data
https://www.sciencedirect.com/topics/computer-science/software-development-tool
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335


2021), Arduino Nano 33 BLE Sense (Arduino Nano 33, 2021), OpenMV Cam H7

Plus (OpenMV, 2021), Himax EW-I Plus (Himax, 2021), Thunderboard Sense 2

(Thunderboard Sense 2, 2021), Sony’s Spresense TinyML Board (Sony’s Spresense

TinyML Board, 2021), Arduino Portenta H7 (Arduino Portenta H7, 2021), Raspberry

Pi 4B (Raspberry Pi 4B, 2021), Nvidia Jetson Nano (Nvidia Jetson Nano, 2021),

CC1352P Launchpad (CC1352P Launchpad, 2021), ESP-EYE (ESP-EYE, 2021),

GAP8 (GAP8, 2021), GAP9 (GAP9, 2021), AI-deck 1.1 (AI-deck 1.1, 2021), Seeed

Wio Terminal (Seeed Wio Terminal, 2021), Agora Product Development Kit (Agora

Product Development Kit, 2021), Pico4ML BLE (Pico4ML BLE, 2021), MKR Video

4000 (MKR Video 4000, 2021), Nicla Sense ME (Nicla Sense ME, 2021), Nordic

Semi nRF52840 DK (Nordic Semi nRF52840 DK, 2021), Nordic Semi Thingy:91

(Nordic Semi Thingy:91, 2021), XCore.ai (XCore.ai, 2021), and FRDM-K64F

(FRDM-K64F, 2021). There are many other alternatives available in the current

market which can also be investigated for suitability for TinyML application

development. We present Table 1 to compare among the mentioned hardware

platforms in terms of processor, CPU clock frequency, flash memory, SRAM size,

power or voltage consumption, connectivity, sensors or connectors and product

developer. We notice that majority hardware boards process below 100 MHz

processor frequency with average less than 1 MB flash and less than 1 MB SRAM.

Bluetooth (BLE) and Wi-Fi are mostly chosen connectivity technologies. We find that

most of the boards facilitate a number of on-board sensors including accelerometer,

temperature, humidity, microphone, gyroscope, air pressure, gesture detection, light

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/raspberry-pi
https://www.sciencedirect.com/topics/computer-science/raspberry-pi
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/static-random-access-memory


sensor, hall-effect, air quality, and camera. Power consumption of such boards is

around the mW range. Most of the devices can be operated from Li-Po and

coin batteries besides regular DC power supply. We also notice that ARM Cortex-M4

is the most popular processor among all other alternatives. Few boards (e.g., GAP8,

GAP9) are in-built with a hardware convolution engine (HCE) to enhance the neural

network aware computation at the edge.

Table 1. Comparison Among Hardware Platforms to Support TinyML.

Hardware Processor CPU Clock Flash SRAM

Apollo3 32-bit ARM

Cortex-M4F

48 MHz,

96 MHz with

TurboSPOTTM

1 MB 384 KB

STM32F

Discovery

32-bit ARM

Cortex-M4 FPU

Core

48 MHz 1 MB 192 KB

ST

IoTDiscovery

ARM

Cortex-M4

48 MHz 1 MB,64Mbit

Quad-SPI

128 KB

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/engineering/electric-power-utilization
https://www.sciencedirect.com/topics/engineering/battery-electrochemical-energy-engineering


Hardware Processor CPU Clock Flash SRAM

ECM3532 AI

Sensor NSP

ARM

Cortex-M3, NXP

CoolFlux 16-bit

DSP

100 MHz 512 KB 256 KB

Arduino

Nano 33 BLE Sense

nRF52840 64 MHz 1 MB 256 KB

OpenMV

Cam H7 Plus

ARM

Cortex-M7

480 MHz 2 MB

(Internal)

1 MB,

32 MB SDRAM

Himax EW-I

Plus

32-bit ARC

EM9D DSP with

FPU Core

400 MHz 2 MB 2 MB

Thunderboard

Sense 2

EFR32™

Mighty Gecko

Wireless SoC

38.4 MHz 1 KB 256 KB

Sony’s

Spresense

ARM

Cortex-M4F 6 Core

156 MHz 8 MB 1.5 MB

Sh
aw
nP
ag
e.c
om



Hardware Processor CPU Clock Flash SRAM

TinyML

Board

Syntiant®

NDP101 NDP,

32-bit ARM

Cortex-M0

48 MHz 256 KB 32 KB

Arduino

Portenta H7

ARM

Cortex-M7, ARM

Cortex-M4 GPU

480 MHz,

240 MHz

16 MB 8 MB

SDRAM

Raspberry Pi

4B

64-bit ARM

Cortex-A72 quad

core, Broadcom

BCM2711

1.5 GHz – 256 KB

AI-deck 1.1 GAP8,

ESP32

168 MHz 1 MB 192 KB

Pico4ML

BLE

Raspberry

Pi RP2040 DSP

dual core

133 MHz 4 MB 264 KB

Sh
aw
nP
ag
e.c
om



Hardware Processor CPU Clock Flash SRAM

MKR Video

4000

Intel®

Cyclone ®

10CL016 FPGA, ,

32-bit ARM Cortex

M0

48–200 MHz 2 MB,

256 KB

32 KB,

8 MB SDRAM

MKR Video

4000

Intel®

Cyclone ®

10CL016 FPGA,,

32-bit ARM Cortex

M0

48–200 MHz 2 MB,

256 KB

32 KB,

8 MB SDRAM

Nicla Sense

ME

ARM

Cortex M4

64 MHz 512 KB 64 KB

CC1352P

Launchpad

CC1352R

Wireless MCU

LaunchPad™

48 MHz 352 KB 8 KB

Sh
aw
nP
ag
e.c
om



Hardware Processor CPU Clock Flash SRAM

Hardware Processor CPU Clock Flash SRAM

ESP-EYE 32-bit

ESP32

240 MHz 4 MB 8 MB

PSRAM

GAP8 RISC-V,

hardware

convolution engine

250 MHz

(FC), 175 MHz (C),

22.65GOPs

512 KB 80 KB,8 MB

SDRAM

GAP9 RISC-V,

hardware

convolution engine

400 MHz,

150.8GOPs

1.5 MB 128 KB,

2 MB External

Nordic Semi

nRF52840 DK

ARM

Cortex M4

64 MHz 192 KB 24 KB

Nordic Semi ARM 64 MHz 1 MB 256 KB

Sh
aw
nP
ag
e.c
om



Hardware Processor CPU Clock Flash SRAM

Thingy:91 Cortex M33,

nRF9160 SiP

XCore.ai Convolution

and dense neural

network FPU 16

core

3200MIPS,

1 M 512 FFTs/s

– 1 MB

FRDM-K64F ARM

Cortex M4

120Mhz 1 MB 256 KB

3.2. Software and libraries

●

TensorFlow Lite (TFL): It is an open-source deep learning framework for

supporting edge aware learning inference. Edge aware on-device machine learning

can be addressed by this framework while leveraging five key constraints (e.g.,

latency, privacy, connectivity, size, and power consumption). It supports Android,

iOS, embedded Linux, and a variety of microcontrollers (TensorFlow Lite, 2021). It

also supports languages (e.g., C++, Python, Java, Swift, Objective-C) to develop

machine learning on the edge device. Model optimization with hardware

acceleration is paved by TFL. A range of AI applications covering classification (e.g.,

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/deep-learning
https://www.sciencedirect.com/topics/computer-science/android
https://www.sciencedirect.com/topics/engineering/embedded-linux
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/hardware-acceleration
https://www.sciencedirect.com/topics/computer-science/hardware-acceleration


image, text), question answering, object detection, and pose estimation can be easily

supported. The size of its binary is ∼ 1 MB, given that all the operators are connected

to 32-bit ARM builds. It can generate as low as 300 KB binary when using some

operators for image classification. Whole work process in TFL follows by selecting a

model, converting the TF model into a compressed flat buffer (.tflite), loading

the .tflite to an embedded edge device, and quantizing the 32-bit floats to 8-bit

integers. TensorFlow Lite Micro (TSFM) is an extension of TFL that aims to run

machine learning in KB size ARM Cortex processors. TFLM is written in C++ 11 and

runs on 32-bit platform (e.g., ESP32, Arduino nano 33 BLE Sense, SparkFun Edge,

STM32F746 Discovery Kit, Adafruit EdgeBadge, Bluefruit, ESP-EYE,

ESP32-DevKitC, Wio Terminal, Himax WE-I, Sony Spresense, and Synopsys

DesignWare ARC EM). However, it doesn’t support on-device training.



●

uTensor: It is a free embedded learning environment that helps to prototype

and rapid deployment at the IoT-edge devices (uTensor, 2021). It includes

an inference engine, a graph processing tool, and upcoming data collection

architecture. It takes a neural network model by using Keras for training. It then

converts the trained model into a C++. The uTensor helps to convert the model for

suitable deployment in the Mbed, ST, and K64 boards. The uTensor is a small size

module that requires only 2 KB on disk. A Python SDK is used to customize the

uTensor from ground up. It depends on the following tool sets such as, Python,

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/image-classification
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/inference-engines
https://www.sciencedirect.com/topics/computer-science/neural-network-model
https://www.sciencedirect.com/topics/computer-science/keras


uTensor-CLI, Jupyter, Mbed-CLI, and ST-link (for ST boards). Initially, a model is

created and then defined with a quantization effect. The next step is code generation

for suitable edge devices.



●

Edge Impulse: It is a cloud service for developing machine learning models in

the TinyML targeted edge devices. This supports AutoML processing for edge

platforms (Edge Impulse, 2021). It also supports a number of boards including smart

phones to deploy learning models in such devices. Training is done on the cloud

platform and the trained model can be exported to an edge device by following a data

forwarder enabled path. The impulse can be run in local machine by the help from the

in-built C++, Node.js, Python, and Go SDKs. Impulses are also deployable as a

WebAssembly library.



●

NanoEdge AI Studio: The software was earlier known as the cartesiam.ai, now

enables selection of the best library and test library’s performance by using an

emulator before final deployment in the edge (NanoEdge AI Studio, 2021). It has

many important features that include (i) limiting maximum flash memory requirement

during project creation, (ii) frequency filtering, (iii0 flash memory optimization, (iv)

serial data plotting, (v) real-time search, and (vi) selection of libraries after

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/automated-machine-learning
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335


benchmarks. It can be used to detect anomalies in dataset and classification tasks. It

supports STM32 Nucleo-32 board and Arduino Nano 33 IoT board



●

PyTorch Mobile: It belongs to the PyTorch ecosystem that aims to support all

phases starting from training to deployment of machine learning models to smart

phones (e.g., Android, iOS). Several APIs are available to preprocess machine

learning in mobile applications (PyTorch, 2021). It can support the scripting and

tracing of TorchScript IR. Further support is given for the XNNPACK 8-bit quantized

kernel targeting ARM CPUs. It can also support GPUs, digital signal processors, and

neural processing units. Optimization facility for mobile phone deployment is paved

via the mobile interpreter. Currently it supports image segmentation, object detection,

video processing, speech recognition, and question answering tasks.



●

Embedded Learning Library (ELL): Microsoft has developed the ELL for

supporting TinyML ecosystem for embedded learning (ELL, 2021). It provides

support for Raspberry Pi, Arduino, and micro:bit platforms. The models which are

deployed in such devices are internet agnostic, thus no cloud access is required. It

supports the image and audio classification at the moment.



Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/detect-anomaly
https://www.sciencedirect.com/topics/computer-science/classification-task
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/digital-signal-processor
https://www.sciencedirect.com/topics/computer-science/image-segmentation
https://www.sciencedirect.com/science/article/pii/S1319157821003335


●

STM32Cube.AI: It is a code generation and optimization software that allows

machine learning and AI related tasks easier for STM32 ARM Cortex M−based

boards (STM32Cube.AI, 2021). Implementation of neural networks in STM32 board

can be directly achieved by using STM32Cube.AI to convert the neural nets into an

optimized code for most appropriate MCU. It can optimize the memory usage during

run time. It can use any trained model by conventional tools such as TFL, ONNX,

Matlab, and PyTorch. This tool is actually an extension of the original

STM32CubeMX framework that helps STM32Cube.AI to perform code generation

for target STM32 edge device and middleware parameter estimation.



●

μTVM: MicroTVM is an extension of existing tensor virtual machines (TVM)

to facilitate execution of tensor programs on microcontroller boards. It allows the

optimization of these programs via the AutoTVM platform that helps to optimize

tensor programs (uTVM, 2021). In practice, a microcontroller is first connected with

the desktop or high-end machine that is running the TVM in the background via

USB-JTAG port. Desktop runs the OpenOCD to provide the connection between the

microcontroller and the desktop. Doing so, OpenOCD supports μTVM to control the

microcontroller by applying a device-agnostic TCP port. User should provide

particulars (e.g., C cross-compiler toolchain for microcontroller, method for

read/write/execute on device’s memory, specification about device’s architectural

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/architectural-layout


layout, and code snippet for preparing the device to execute the function) for getting

support from μTVM. The μTVM requires the MicroSession to have connection with

the device based on the given method (e.g., OpenOCD). Later, the μTVM runtime is

cross compiled as per the cross-compiler supplied earlier. Finally, the binary of the

compiled code is loaded to the device. One can face various aspects of μTVM

association with TinyML, for example, lazy execution, tensor loading, function

calling, and module loading. Fig. 6. presents the system model consisting of μTVM

for deploying optimized models to microcontrollers i.e., TinyML-based edge devices

(uTVM system, 2021).





. Download: Download high-res image (121KB)

. Download: Download full-size image

Fig. 6. System model for μTVM optimization and deployment

to microcontroller.

4. Key enablers of TinyML

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/engineering/architectural-layout
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr6_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr6.jpg
https://www.sciencedirect.com/topics/computer-science/microcontroller


4.1. TinyML-as-a-Service

TinyML-as-a-Service or TinyMaaS aims at solving some of the important

problems related to machine learning for embedded domains such as the efficient

business development process for ML in the IoT environment. Conventional

cloud-based ML tasks are leveraged by a set of cloud providers (CP) which are

equipped with a CPUs, GPUs, and tensor processing unit (TPU). On other hand, the

embedded devices with minimal processing and memory capabilities are not deemed

to be suitable to run full-fledged ML models (Doyu et al., 2020). The cloud-based

web services provide thousands of various tool sets to process the whole ML flow

chain starting from data collection, preprocessing, data transformation, model training,

model deployment, and inference. Whereas, embedded devices are only fit for ML

model inferences. Such a huge scale-wise gap makes the task of the embedded

devices challenging for ML augmentation. Ordinarily, pre-trained ML models require

huge computational and infrastructural resources that resource constrained IoT-based

devices may not be capable to leverage of. Thus, such models should be optimized for

size fitting well before loading such models to IoT devices. An ML compiler can

translate the pre-trained ML models for deployment to a target IoT device.

Minimization of models can be done by allowing one of the following techniques

such as, quantizing (fewer bits for computation), pruning (eradicating useless

parameters), and fusing (combining multiple operators together into one). TinyMLaaS

ecosystem should require a number of ML compilers which can generate specialized

light-weight ML runtime models for a given embedded platform. It is also worthy to

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/development-process
https://www.sciencedirect.com/topics/computer-science/cloud-provider
https://www.sciencedirect.com/science/article/pii/S1319157821003335


inculcate ML models suitable for specific IoT-based hardware accelerators i.e., chip

manufacturer dependent. The major focus of this service aspect is to provide

customized on-demand facility to the product developers. One can think of using the

Light-weight machine-to-machine (LwM2M) along with on-the-fly model inferencing

modules (e.g., Zoo) for generation of appropriate ML model for IoT device. Such a

holistic ecosystem can minimize the product development duration for the embedded

designers who may wish to select variety of ML algorithms and models. Thus, one

should expect a plausibly high impact on the forthcoming business process involving

the embedded ML development. Fig. 7. presents the TinyMLaaS architecture.

. Download: Download high-res image (310KB)

. Download: Download full-size image

Fig. 7. TinyML-as-a-Service.

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/engineering/machine-learning-algorithm
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr7_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr7.jpg


TinyMLaaS can mitigate the privacy concern for business by keeping user

data within the physical “on-premises” boundaries. It can try to confine the processing

of business sensitive data only at the IoT device itself in the enterprise solutions. It

can also help in reduction of the network bandwidth while focusing a set of IoT

end-devices for performing heterogeneous tasks). TinyMLaaS should assume that the

majority of the IoT devices are equipped with narrowband connectivity (e.g., NB-IoT)

where a device can have very limited possession of data transmissions. Such indicates

the importance of “on-premises” data augmentation resulting in the work of data to

offloading at the IoT-edge. Further, one can envisage the ultra-reliable and

low-latency aware services under the aegis of the TinyMLaaS where inference of ML

models is possible at the device level. Moreover, the IoT devices that are deployed in

a wide range of unstable network coverage areas (e.g., rural areas, sea, mountain)

should be enabled with on-device decision making based on feature wise predictions

(TinyML as-a-Service, 2021). Doing so, it will subsequently minimize the power

consumption aspects and improve the energy efficiency. One can consider such last

mile Io devices as battery powered that can perform processing locally with a minimal

intervention of edge or cloud data connectivity.

4.2. Hyperdimensionl computing

Hyperdimensional computing (HDC) provides an alternative option to the

existing learning techniques with lightweight algorithms. Such minimal algorithms

consume very less energy as compared to conventional techniques. In this approach,

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/network-bandwidth
https://www.sciencedirect.com/topics/computer-science/data-augmentation
https://www.sciencedirect.com/science/article/pii/S1319157821003335


all the data points are represented by high-dimensional vectors i.e., hyper vectors. The

hypervectors are mapped to the high-dimensional space i.e., hyperspace for

completion of the computational task. Ordinarily, a large hyper vector

dimension (D ≥ 1000) is required to achieve at par accuracy when compared to

conventional neural learning techniques. However, an excessive increase of

hypervector dimension can incur higher computational cost and hardware cost,

resulting in undermined benefits. Table 2 presents the comparison between classical

and HDC classification (Ge and Parhi, 2020).

Table 2. Comparison between classical and HDC classification (Ge and Parhi,

2020)

Computing Types Classical Computing HDC Computing

Data Type Bit Hypervector

Data Transmission Addition, Multiplication, Logic Add-Multiply-Permute

Storage Memory Item Memory, Associative Memory

Training Weights Class Hypervectors

Testing Run Pre-trained Classifier Associate Query Hypervectors with Class Hypervectors

Model Complexity High Low

Accuracy Very High Acceptable

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/vector-dimension
https://www.sciencedirect.com/topics/computer-science/vector-dimension
https://www.sciencedirect.com/topics/engineering/hardware-cost
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335


Computing Types Classical Computing HDC Computing

Feature Encoding Easy Difficult

Number of Features Many One

In this context, one can expect TinyML to consider the hyper vectors as a

promising component for leveraging a new horizon of embedded intelligence. HDC

differs from neural learning algorithms in terms of primary data type where raw

samples are mapped to the random high-dimensional vectors i.e., sample hypervectors.

In the next phase, similar sample high-dimensional vectors are combined in linear

fashion to come up with an ensemble class of hypervectors known as the class

encoders. A query hyper vector (Q) is later generated during the inference process

based on a given input as per the process mentioned for the sample hypervectors. At

the last phase, the classifier tends to find the closest class hypervectors to Q based on

the hamming distance or cosine similarity metrics. Despite high accuracy rates, high

demand for memory and energy aware processing capabilities limits the hypervectors

for the IoT-based embedded devices. Minimization of hyper vector dimension should

be investigated to provide optimum accuracy rate against the enhanced robustness of

the classifier. In (Zhou et al., 2021), limb-position aware hand gesture

recognition system is proposed by using the HDC technique. This work shows

context-aware orthogonalization for classifying gestures in multiple limb positions.

To achieve this, firstly the electromyogram (EMG) signal is projected into the

hypervectors and classified according to the baseline HDC classifier. In the next stage,

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/engineering/data-type
https://www.sciencedirect.com/topics/engineering/hamming-distance
https://www.sciencedirect.com/topics/computer-science/cosine-similarity
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/hand-gesture-recognition
https://www.sciencedirect.com/topics/computer-science/hand-gesture-recognition
https://www.sciencedirect.com/topics/engineering/orthogonalization


a dual-stage architecture is imposed over the classification to emulate the

context-based orthogonalization. The work ends with the direct encoding

of accelerometer sensor features into the context of the hypervectors. Fig. 8. Presents

HDC-based quantized signal representation from accelerometer sensor.

. Download: Download high-res image (126KB)

. Download: Download full-size image

Fig. 8. HDC-based quantized signal representation from accelerometer sensor.

In (Basaklar et al., 2021), a mechanism is presented to minimize the

dimensions of the HDC classifier to reduce memory and power consumption to align

its orientation as per the IoT devices. The HDC training phase mentioned in this study

comprises three steps such as, (1) quantization and mapping, (2) construction of

sample hypervectors, and (3) classifier encoding as shown in Fig. 9. which is also

known as the baseline HDC implementation. In the quantization and mapping step,

the input space is quantized in D-dimensional level hypervectors. A low dimension

quantization and high dimensional mapping are subsequently performed. In the

second step, construction of sample hypervectors is done by using the input sample

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/orthogonalization
https://www.sciencedirect.com/topics/engineering/accelerometer-sensor
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/quantized-signal
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr8_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr8.jpg
https://www.sciencedirect.com/topics/engineering/quantized-signal
https://www.sciencedirect.com/topics/engineering/accelerometer-sensor
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/science/article/pii/S1319157821003335


and level hypervectors. Finally, the classifier encoding is performed by adding all

sample hypervectors with predefined labels. The work optimizes the trade-off

between the classifier accuracy and the robustness with more than twice of the regular

robustness.

. Download: Download high-res image (398KB)

. Download: Download full-size image

Fig. 9. HDC training phases with arbitrary bit values.

4.3. Swapping

Sh
aw
nP
ag
e.c
om

https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr9_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr9.jpg


Existing neural network models need higher processing ability which is surely

a big issue for IoT-based devices having very less static random-access memory

(SRAM) of the microcontroller unit. Numerous techniques are investigated to deploy

neural networks in the IoT ecosystem, however most of them sacrifice accuracy and

generality in doing so. In (Miao and Lin, 2021) a new method is presented to execute

neural networks in IoT centric microcontrollers by using swapping. In this approach

neural networks are swapped between the tiny microcontroller’s memory and the

external large flash memory. The out-of-core neural network allows splitting one

neural network layer’s working into multiple series of tiles. Each of these tiles can be

loaded into a tiny memory space of an IoT device. Upon a demand is raised, a

requested chunk of the neural network layer is swapped from the external flash or

memory SD card to the main memory. Excessive swapping may cause the micro-SD

card loss durability along with execution slowdown of input/output operations, lack of

security, and increase of energy consumption. The paved method demonstrates

several acts to overcome such challenges. For example, hiding swapping delays with

improved parallelism at minute granular levels. Fig. 10. presents the SwapNN

architecture covering scheduling of input/output tasks in the tiles, layers, and frames

parallelly. The process starts with extraction of CPU/IO parallelism to hide

input/output delays. Firstly, it performs parallelism in the neural network layer to

produce Tile0. Microcontroller can then use this Tile0 to compute the

next Tile1 while swapping the tiles between the on-board memory and the external

flash. Layer parallelism is the next option where input/output tasks are executed

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/neural-network-approach
https://www.sciencedirect.com/topics/computer-science/neural-network-approach
https://www.sciencedirect.com/topics/computer-science/layer-neural-network
https://www.sciencedirect.com/topics/engineering/parallelism
https://www.sciencedirect.com/topics/computer-science/granular-level
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/parallelism


simultaneously. At the last phase, pipeline parallelism is achieved across the data

frames. The benefit of this method is to compute both memory and IO bound layers in

parallel for different frames. Two major types of tasks can be performed in the

SwapNN architecture namely compute task (computer output tiles given that input

tiles are available) and IO task (performs read/write of tiles from/to the external SD or

flash memory). The task state of SwapNN defines the life cycle for each of the tasks

related to IO and computation. For example, (i) INIT: used to set initialize the state

during the creation of building graph, (ii) READY: when all predecessors are done

with their job, a task becomes ready while keeping the in-degree counter reach 0, (iii)

SELECTED: when memory is allocated to a task it switches from READY to

SELECTED state, and (iv) FINISHED: upon completion of an IO task, it is switched

to FINISHED state; at this point the in-degree counter is incremented by 1 so that all

the successors can free-up the memory buffers.

. Download: Download high-res image (472KB)

. Download: Download full-size image

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/computer-science/pipeline-parallelism
https://www.sciencedirect.com/topics/engineering/buffer-memory
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr10_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr10.jpg


Fig. 10. SwapNN architecture.

This study shows that dong SwapNN has very less impact on the external SD

card in terms of durability loss and lifetime. SwapNN adds more energy efficiency to

the IoT device by minimizing overall power drop for the microcontroller unit. It is

noticed that with a sufficiently large buffer or tile size, SwapNN sees a very

throughput loss. Due to the parallel execution, overall IO overhead is reduced.

Moreover, the large tile size allows the IO-bound layers to increase delay. This

swapping neural networks can be considered as a promising technique for inclusion in

the TinyML genre.

4.4. Attention condensers

Attention condensers are introduced as the key enabler of deep neural

networks at the IoT-edge devices where low memory and processing capabilities are

present. It can be used for a multitude of applications that includes complex speech

and image recognition at the edge devices. An attention condenser can be considered

as the self-attention mechanism that can self-learn and produce a condensed

embedding. Such an embedding can characterize the joint local as well as

cross-channel activation relationships. It allows us to perform selective attention as

required. Attention condensers are different in terms of generic self-attention

techniques which are designed to support deep convolutional neural networks. The

key difference lies in the holistic augmentation of self-contained and stand-alone

modules that can facilitate the larger sparser towards more frequent usage of attention

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/engineering/joints-structural-components
https://www.sciencedirect.com/topics/computer-science/deep-convolutional-neural-networks


condensers. Fig. 11. presents a design of the attention condenser having a

condensation layer – C(V). The condensation layer is chained together with an

embedding structure – E(Q). The whole design involves an expansion layer – X(K)

and a selective attention approach – F(V,A,S). The task of C(V) is to help condense

the input activation V to reduce the dimensionality to the condenser. Such dimension

minimization is fed to Q to emphasize several activations that are placed very close

proximity to the strong activations. The E(Q) then learns a condensed embedding (K)

and produces such K from Q for characterization joint local along with cross-channel

activation duo. Next phase aims to produce selective attention F(V,A,S) upon

generation of self-activation values A from X(K). Such a deed is important to increase

the dimensionality so that an output V’ can be produced as a function of input

activations (V), self-attention values A, and scale S.

. Download: Download high-res image (76KB)

. Download: Download full-size image

Fig. 11. Attention condenser with a condensation layer.

Attention condensers can open up a new dimension between embedded

intelligence and machine learning for a multitude of applications. One can expect

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/engineering/close-proximity
https://www.sciencedirect.com/topics/engineering/close-proximity
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr11_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1319157821003335-gr11.jpg


attention condensers to facilitate tetherless machine learning in the extreme edge of

the IoT ecosystem. It can enhance real-time decision-making capability at the IoT

devices while preserving privacy, security, and dependability. The focus of attention

condensers is to minimize the computational resources at the embedded devices. Its

usage can be extended to the high-efficiency embedded deep neural networks for

provisioning a variety of tasks such as drug discovery, natural language

processing and visual perception.

The AttendNets (Wong et al., 2020b) is such a recently introduced deep neural

network which is highly compact and designed for deployment at the extremely

resource constrained IoT devices for image recognition applications. The AttendNets

depend on the philosophy as mentioned earlier to extend stand-alone attention

condensers for enhanced spatial-channel selective attention mechanisms. A machine

design exploration scheme is employed on AttendNets to formulate both macro and

micro architectural aspects of machine-driven designs. It shows promising results

when compared to ImageNet50 benchmark dataset in terms of accuracy, parameter

reduction, minimization of memory utilization, and lowering multiply–add operations.

Another recent work demonstrates an attention condenser neural network that

can achieve the semantic segmentation at the IoT edge device i.e., AttendSeg. This

semantic segmentation scheme aims at device level low-precision but high compact

deep neural network deployment.

Sh
aw
nP
ag
e.c
om

https://www.sciencedirect.com/topics/engineering/dependability
https://www.sciencedirect.com/topics/computer-science/computational-resource
https://www.sciencedirect.com/topics/computer-science/natural-language-processing
https://www.sciencedirect.com/topics/computer-science/natural-language-processing
https://www.sciencedirect.com/science/article/pii/S1319157821003335
https://www.sciencedirect.com/topics/computer-science/attention-machine-learning
https://www.sciencedirect.com/topics/engineering/machine-design
https://www.sciencedirect.com/topics/engineering/machine-design
https://www.sciencedirect.com/topics/computer-science/image-segmentation

	A review on TinyML: State-of-the-art and prospects
	Abstract
	Keywords
	1. Introduction
	2. Background of TinyML
	2.1. Basics of TinyML
	2.2. Constraints of TinyML
	2.3. Definition of TinyML
	2.4. TinyML in edge

	3. TinyML tool sets
	3.1. Hardware
	3.2. Software and libraries

	4. Key enablers of TinyML
	4.1. TinyML-as-a-Service
	4.2. Hyperdimensionl computing
	4.3. Swapping
	4.4. Attention condensers



